ARMStrong — автоматизированная система радиационного контроля

Веселова А.Е., Веселова И.Е. и Акимова Д.Н., Димитровград, 2023 год.

1. Общие сведения

ARMStrong (*англ.: Automated Radiation Monitoring System*) — автоматизированная система радиационного контроля, (далее **СРК**) включающая в себя комплекс средств, призванных осуществлять радиационный контроль, в целях снижения травматизма, предупреждения предаварийных ситуация и недопущения развития аварийных сценариев.

ARMStrong реализует базовую трехуровневую архитектуру представленной на рисунке 1, и является вторым и третьим уровни соответственно.

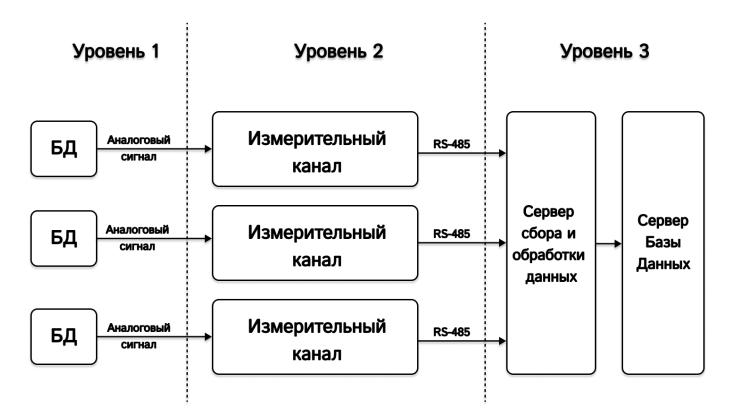


Рисунок 1 - Архитектурная схема уровней СРК

1.1 Цели и назначение

ARMStrong на сегодняшний день обеспечен следующим функционалом:

- Сбор, обработка и хранение информации с блоков детектирования (далее БД);
- Осуществление управления БД;
- Агрегирование данных с целью представления в виде числовых значений и графиков;
- Свето-звуковое оповещение при превышении предаварийных и аварийных пороговых значений;

В будущем присутствует возможность добавления функционала для:

- Расширения парка поддерживаемых устройств с аналоговым выходом или поддерживающих протокол RS-485, например, управление электромагнитными клапанами или новым **БД**;
- Построения тепловых карт по собранным данным;

1.2 Архитектура 2-го и 3-го уровня

Второй уровень представляет собой измерительные каналы и каналы свето-звуковой сигнализации. Каналы объединяются параллельно и подключаются к серверу сбора и обработки данных (далее **ССОД**) по RS-485 линии связи.

В свою очередь **ССОД** после получения и обработки данных с измерительных каналов сохраняет значения в базу данных, расположенной на сервере баз данных (*далее* **СБД**).

Коммутатор устанавливается для объединения всех серверов в стойке в одну локальную сеть, чтобы **ССОД** могли иметь доступ до **СБД**.

Маршрутизатор устанавливается в стойку для организации локальной сети внутри каждой серверной стойки, что повышает отказоустойчивость в случае обесточения и отказа внешних маршрутизаторов. Организация доступа к данным может осуществляться как прямыми запросами в базу данных, так и через <u>АРI</u> для зарегистрированных и аутентифицированных WEB-клиентов.

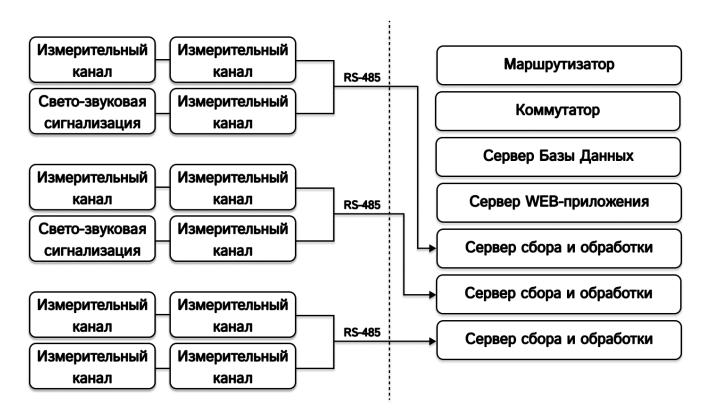


Рисунок 2 - Архитектурная схема 2-го и 3-го уровня

2. Hardware уровень

Измерительный канал, который получил название **АСРК** (*Автоматизированное Средство Радиационного Контроля*) выполнен на печатной плате на базе микроконтроллера ATMega-8. Интерфейсы подключения:

- Аналоговый вход: разъем типа РМ;
- Комбинированный выход: коннектор 5-pin (2-pin A-B Data + 3-pin DC 12V);
- Логические выходы: штырьковые разъемы.

Размеры одного готового к подключению канала всего **70 * 35 * 35** миллиметров, а без разъема типа РМ и вовсе составляет **42 * 21** миллиметра.

Измерительный канал подключается к персональному компьютеру или серверу при помощи преобразователя интерфейсов RS-485 --> USB. В нашем случае используется преобразователь интерфейсов <u>OBEH AC4-M</u>

2.1 ПО контроллера

Програмное обеспечение контроллера (далее **ПОК**) написано на языке программирования с и скомпилированно под ATMega 8.

ПОК реализует самописный протокол обмена данными, который основан на стандартизированном промышленном протоколе <u>Modbus</u>.

ПОК позволяет осуществлять:

• Назначение адреса канала;

- Назначение режима обработки сигнала от БД (Частотный / Времянной / Счет отключен)
- Управление бленкером, генератором и другими средствами самопроверки БД;
- Осуществление перемотки кадра лентопротяжного механизма БД;
- Управление свето-звуковой сигнализацией.
- Опрос значений измерений БД;

2.2 Предоставляемые возможности

Помимо описанных возможностей в разделе 2.2 ПО контроллера, канал связи может быть исполнен в разных конфигурациях и с разным количеством логических выходов.

Канал связи может быть дооснащен дисплеем и аккумулятором, и использован в качестве автономного, носимого, прямопоказывающего БОИ (блока обработки информации), для подключаемого к нему **БД**.

Также канал связи может быть использован в качестве дооснащения существующих **БД** или при изготовлении новых **БД** для организации прямого подключения, т.к. размеры платы очень малы, а потребление всего 0.010-0.015 Ампера.

Сфера применения платы канала связи АСРК не ограничивается только стационарными решениями для обеспечения радиационной безопасности, за счет малого потребления тока и малых габаритов это устройство может помогать решать достаточно широкий спектр задач.

3. Серверный уровень

3.1 Уровень хранения информации

3.1.1 База данных

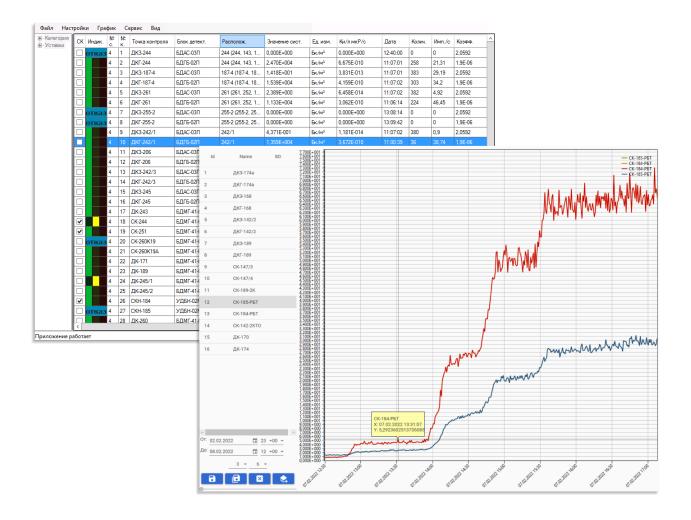
В качестве сервера базы данных в нашем случае используется сервер DEPO Storm 1420Q1 оснащенный 4 серверными жесткими дисками, емкостью по 4 террабайта каждый и объединенными в <u>RAID10</u> массив, что повышает отказоустойчивость и осуществляет первичное резервирование данны.

∆ Важно!

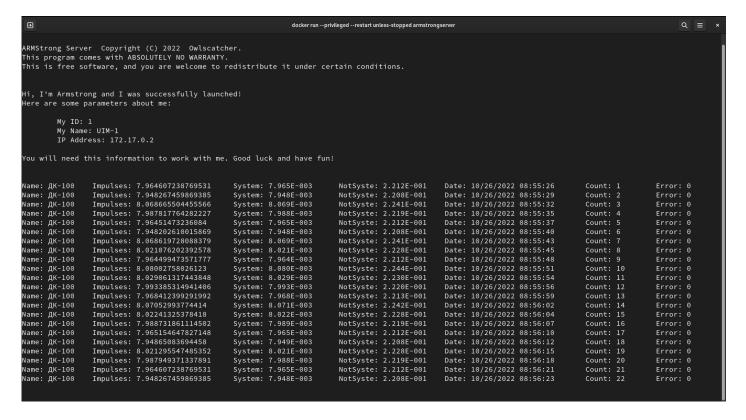
Каждый такой сервер, обеспечивающий работу базы данных, должен быть оснащен дополнительным комплектом из минимум 4-х аналогичных жестких дисков для обеспечения подменного фонда.

На сервер установлена бесплатная, с открытым исходным кодом операционная система на базе ядра <u>Linux</u> — <u>Ubuntu 20.04</u> <u>LTS</u>.

В качестве <u>СУБД</u> используется бесплатная с открытым исходным кодом СУБД <u>PostgreSQL</u>.


3.2 Уровень обработки данных

Уровень обработки данных:


- Осуществляет опрос измерительных каналов в заданном интервале времени;
- Преобразует полученные данные в <u>системные</u> и <u>внесистемные</u> величины в соответствии с типом **БД**, такие как: мЗв/ч (мкР/с) или Бк/м. куб. (Ки/л);
- Сохраняет полученные данные с временной меткой в базу данных;
- Осуществляет управление свето-звуковой сигнализацией в соответствии с установленными порогами на каждом канале через канал связи **ACPK**;
- Осуществляет агрегирование данных для расчетов выбросов газа из вентсистем в заданных промежутках времени;
- Осуществляет агрегирование данных для отображения графиков;
- Осуществляет управление БД через канал связи АСРК;

В качестве сервера **ССОД** используются промышленные компьютеры <u>AdvantiX</u>, но могут использоваться и менее громозкие и дорогие решения, так как требования ПО **ССОД** к вычислительной мощности **ССОД** достаточно низкие. В качестве таких решений могут выступать даже одноплатные компьютеры, типа <u>Raspberry PI 4</u> или их аналоги, поддерживающие запуск x64 Linux.

Первоначально **ПО ССОД** написано на С#, .net framework 4.7 под ОС Windows с графическим интерфейсом, который выступал и сервером и клиентом:

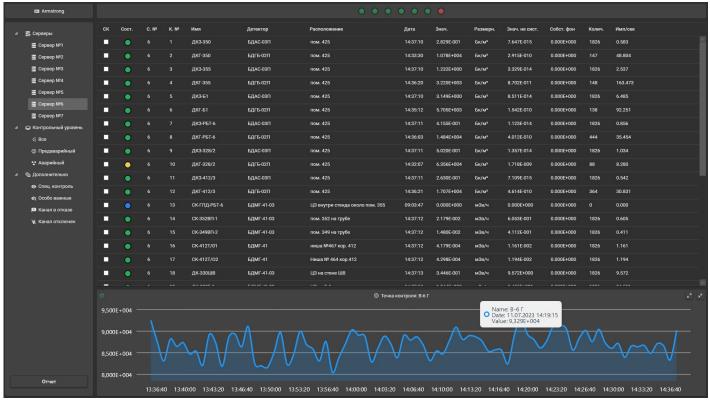
Но на данный момент, с целью миграции на системы на базе ядра Linux, основная часть ПО сервера была переписана на С#, net core 6, и теперь является кросс-платформенным серверным решением, а клиент был выделен в отдельное desktop и web-приложение.

ПО **ССОД** запускается в изолированном контейнере, который в случае непредвиденных ошибок будет автоматически перезапущен. Подход с использованием контейнеров позволяет не устанавливать зависимости на серверные машины (весь runtime включен в состав сборки) и в случае поломки позволит в кратчайшие сроки без лишних манипуляций запустить сервер на новой / резервной серверной машине.

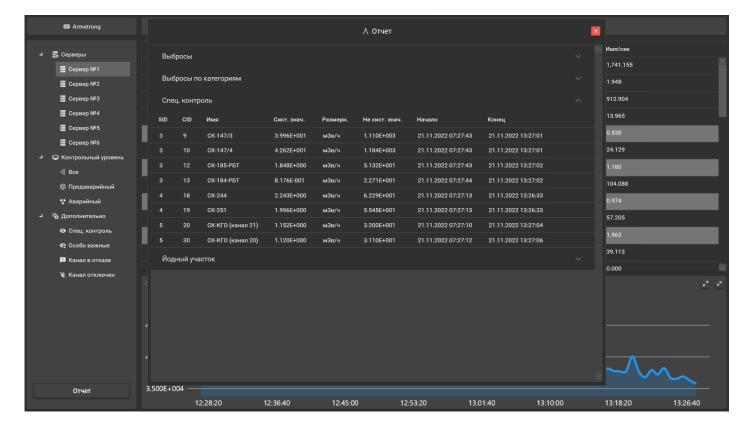
Контейнеризация ПО **ССОД** так же обеспечивается free-open-souce ПО <u>Docker</u> и <u>docker-compose</u>.

4. Клиентский уровень

4.1. Desktop-клиент


Desktop-клиент написан на С#, net core 6 с использованием библиотеки WPF, представляет собой средство отображения информации со всей системы, такой как:

- Результаты измерения с БД;
- Состояние пороговой сигнализации и измерительных каналов;
- Состояние всех доступных ССОД;
- Графики значений по точкам контроля.


Клиент позволяет:

- Устанавливать на контроль один из выбранных каналов, что позволяет в реальном времени отслеживать динамику на автообновляемом графике в нижней части клиента. На этом автообновляемом графике отображаются результаты измерения на выбранном измерительном канале за последний час;
- Выбирать способ сортировки и отображения каналов (отображать только превышения / конкретный сервер / отказавшие каналы и др.);
- Отображать график по нескольким каналам за выбранный промежуток времени (в отдельном окне) или за сутки (в нижней части экрана);
- Так как на графиках происходит усреднение, с целью оптимизации, окно графика позволяет подгружать точки при масштабировании графиков, с целью уточнения кривой. Также в окне графиков реализована история масштабирования (всегда можно вернуться к предыдущему виду без перезагрузки графиков) и реализован механизм сохранения скриншота графиков;
- Отображать отчет по выбросной системе (за 2/6/24 часа) по точкам спец-контроля.

Внешний вид клиента:

Отображение отчетов по выбросной системе:

Отображение графиков:

В данный момент ведется активное расширение функционала клиента. Клиент и сервер введены в опытную эксплуатацию.

4.2. WEB-платформа

∆ Важно

WEB-платформа будет введена в опытную эксплуатацию до ноября 2023, возможны изменения в интерфейсе или незначительные изменения в логике.

ARMStrong - это веб-платформа с открытым исхожным кодом, разработанная для всех, кто сталкивается с задачами радиационного контроля, менеджмента средств измерения и упрощения коммуникации между службами.

Платформа разрабатывается на языках Ruby , JavaScript и C# , включает в себя комплексное решение для упрощения взаимодействия служб, упрощенный доступ до данных системы радиационного контроля, унифицирования информации, с целью упрощения доступа к ней сотрудников авторизированных служб.

Проблемы, стоящие перед нами:

- 1. Мониторинг и контроль радиационной обстановки критически важная задача, стоящая перед многими отраслями и организациями, без выполнения которой становится невозможным эксплуатация реакторных установок, обращение с источникам ИИ и так далее;
- 2. Продление сроков эксплуатации, поверка соответсвия референсным показаниям, ремонт и в целом сопровождение средств измерения (далее **СИ**) нетревиальная задача, которая требует сложной коммуникации между службами;
- 3. Оформление допуск-наряда до радиационно опасных работ обязательная процедура, которая сопровождается множеством бюрократических издержек, бумажные допуск-наряды неудобно хранить, а поиск по ним становится задачей порой нескольких суток.

На данный момент решены 1 и 2 задачи, к решению 3 было принято решено приступить после введения в опытную эксплуатацию.

1 Подробности

Подробная презентация WEB-платформы с описание функционала приведена в приложении "Презентация Web-платформы ARMStrong".

5. Системы мониторинга состояний отдельных юнитов системы

Когда серверов становится больше одного, отслеживание состояний машин становится достаточно трудозатратной задачей, требующей постоянного присутствия специалиста. Современные средства позволяют осуществлять наблюдение за парком устройств в автоматическом режиме и заблаговременно оповещать о проблемах, например, об заканчивающимся месте на жестких дисках, оперативной памяти или зависании машины, перегрев и тд.

В качестве сервера мониторинга мы будем использовать <u>Zabbix</u> + <u>Graphana</u>. Они позволят отслеживать состояние машин, отображать в виде графиков нужную информаци, информировать о различных ошибках или изменениях отслеживаемых параметров.

Благодаря применению таких средств, мы сократим время простоя участков системы и увеличим отказоустойчивость. Система будет легко расширяемой не только за счет простого масштабирование серверной части **ARMStrong**, но и за счет систем мониторинга zabbix и graphana.